Altering Anode Thickness To Improve Power Production in Microbial Fuel Cells with Different Electrode Distances
نویسندگان
چکیده
A better understanding of how anode and separator physical properties affect power production is needed to improve energy and power production by microbial fuel cells (MFCs). Oxygen crossover from the cathode can limit power production by bacteria on the anode when using closely spaced electrodes [separator electrode assembly (SEA)]. Thick graphite fiber brush anodes, as opposed to thin carbon cloth, and separators have previously been examined as methods to reduce the impact of oxygen crossover on power generation. We examined here whether the thickness of the anode could be an important factor in reducing the effect of oxygen crossover on power production, because bacteria deep in the electrode could better maintain anaerobic conditions. Carbon felt anodes with three different thicknesses were examined to see the effects of thicker anodes in two configurations: widely spaced electrodes and SEA. Power increased with anode thickness, with maximum power densities (604 mW/m, 0.32 cm; 764 mW/m, 0.64 cm; and 1048 mW/m, 1.27 cm), when widely spaced electrodes (4 cm) were used, where oxygen crossover does not affect power generation. Performance improved slightly using thicker anodes in the SEA configuration, but power was lower (maximum of 689 mW/m) than with widely spaced electrodes, despite a reduction in ohmic resistance to 10 Ω (SEA) from 51−62 Ω (widely spaced electrodes). These results show that thicker anodes can work better than thinner anodes but only when the anodes are not adversely affected by proximity to the cathode. This suggests that reducing oxygen crossover and improving SEA MFC performance will require better separators.
منابع مشابه
Modeling of Multi-population Microbial Fuel and Electrolysis Cells Based on the Bioanode Potential Conditions
Microbial fuel cell and microbial electrolysis cell are two major types of microbial electrochemical cells. In the present study, we governed modeling of these systems by concentrating on the simulation of bioelectrochemical reactions in both biofilm and anolyte and considering the effect of pH on the microbial growth. The simulation of microbial fuel and electrolysis cells can be described by ...
متن کاملApplication of dual chamber microbial fuel cell with aeration cathode for bioelectricity generation and simultaneous industrial wastewater treatment
Background and Objective: Microbial fuel cell (MFC) is a new green technology that uses the catabolic ability of microorganisms to produce bioenergy while simultaneously removing organic matter and other wastewater contaminants. Electrode material is one of the factors affecting the performance of microbial fuel cells. The aim of this study was to investigate the performance of microbial fuel c...
متن کاملImpact of Ferrous Iron on Microbial Community of the Biofilm in Microbial Fuel Cells
The performance of microbial electrochemical cells depends upon microbial community structure and metabolic activity of the electrode biofilms. Iron as a signal affects biofilm development and enrichment of exoelectrogenic bacteria. In this study, the effect of ferrous iron on microbial communities of the electrode biofilms in microbial fuel cells (MFCs) was investigated. Voltage production sho...
متن کاملPerformance comparison of microbial fuel cells equipped with different membrane electrode assemblies
It is important for practical use of microbial fuel cells (MFCs) to not only develop new materials including electrodes and proton exchange membranes but also to understand the bacterial community structure related to electricity generation. Here, four kinds of novel membrane electrode assemblies (MEAs) were made. Four lactate fed MFCs equipped with the membranes were characterized by electroch...
متن کاملElectrode Materials for Lithium Ion Batteries: A Review
Electrochemical energy storage systems are categorized into different types, according to their mechanisms, including capacitors, supercapacitors, batteries and fuel cells. All battery systems include some main components: anode, cathode, an aqueous/non-aqueous electrolyte and a membrane that separates anode and cathode while being permeable to ions. Being one of the key parts of any new electr...
متن کامل